附件1：广西工业技师学院

广西中职优质学校和优质专业（化学工艺专业）建设项目——“提升信息化水平”内容建设采购需求及报价表
	序号
	项目名称
	采购需求
	单位
	数量
	单 价

（元）
	小计

（元）

	1
	软件设计与开发
	1. 项目概述

1.1 项目背景

随着教育信息化与智能化的发展，传统题库系统在题目生成、知识点覆盖、个性化学习支持等方面存在局限。本项目旨在结合RAG（检索增强生成）技术与知识图谱，构建一个支持智能题目生成、知识点关联分析、学习数据追踪与可视化的教育平台。

1.2 项目目标

实现基于RAG的知识库管理，支持自主上传资料并生成结构化知识。

构建可视化的知识图谱，支持知识点关联展示与查询。

实现基于大模型的智能题目生成与分级。

提供学生端与教师端的数据分析视图，支持学习过程追踪与教学决策。

1.3 适用范围

适用于K12、高等教育、职业培训等教育场景，支持教师出题、学生练习、错题复习、学习分析等功能。

2. 用户角色

角色

职责与需求

学生

练习题目、查看知识点掌握情况、复习错题、查看个人学习数据可视化报表

教师

管理题库、查看班级学习数据、制定复习计划、生成针对性题目

管理员

管理用户、管理知识库、配置系统参数、监控系统运行状态

系统

自动生成题目、分析学习数据、更新知识图谱、提供API接口

3. 功能需求

3.1 知识库管理模块

支持上传多种格式资料（PDF、Word、TXT、Markdown等）。

支持RAG拉库机制，自动提取文本、图像中的知识点。

支持本地/云端知识库部署，需验证本地服务器支持性。

支持知识图谱的构建与可视化展示，包括节点关联、关键词云等。

3.2 题目生成与管理模块

支持基于知识点的题目自动生成（选择题、填空题、简答题等）。

支持题目分级（难易度、知识点覆盖度）。

支持按关键词、知识点比例组卷。

支持随机组卷与手动组卷。

3.3 练习与测试模块（学生端）

支持按知识点、难度、题型进行练习。

支持错题自动归集与复习计划推荐。

支持练习过程中的实时提示与答案解析。

支持练习数据的实时记录与更新。

3.4 学习数据分析模块

学生端：

展示个人在各知识点下的正确率、练习次数、掌握程度。

支持图形化展示（柱状图、折线图、雷达图、词云等）。

支持历史数据对比与趋势分析。

教师端：

查看班级整体学习情况。

查看各知识点的平均正确率、薄弱环节分布。

支持导出报表、生成教学建议。

3.5 错题复习模块

支持学生自主复习错题。

支持教师查看班级共性错题。

支持基于错题知识点智能推荐相似题目或生成新题。

3.6 系统管理模块

用户权限管理（学生、教师、管理员）。

知识库版本管理。

系统日志与操作审计。

API接口管理（支持大模型调用、第三方集成）。

4. 非功能需求

4.1 性能要求

题目生成响应时间 ≤ 3秒。

知识图谱可视化加载时间 ≤ 2秒。

支持并发用户数 ≥ 1000。

4.2 安全要求

用户数据加密存储。

访问权限控制（RBAC）。

防SQL注入、XSS攻击等安全机制。

4.3 可扩展性

支持插件化扩展新题型、新图表类型。

支持多语言、多学科知识库。

4.4 可用性

界面简洁易用，支持响应式设计。

提供操作指引与帮助文档。

5. 技术架构建议

5.1 系统架构

前端：Vue.js + ECharts （可视化）

后端：Python + FastAPI

数据库：MongoDB（结构化数据） + Neo4j（知识图谱）

知识库：Milvus / Chroma（向量数据库推荐Chroma）

大模型接入：DeepSeek API / 国产大模型（如ChatGLM、豆包）

部署：Docker，支持本地/云端部署

5.2 RAG实现路径

资料预处理（文本提取、清洗、分段）

向量化嵌入（使用Sentence-BERT等模型）

检索增强生成（RAG结合大模型生成题目）

知识图谱构建（实体识别、关系提取、图谱存储）

框架选择FastGPT（RAG与生成模型耦合紧密，支持“渐进式检索”等多轮交互优化策略。提供较多预置工作流模板）
配套工具选择DocXChain（由阿里巴巴开源，对中文文档和扫描件的解析效果较好，且模块化设计便于集成）

	项
	1
	
	

	2
	系统维护（首年）
	一、主要服务类型

1. 纠正性维护

目的：修复系统中发现的缺陷或错误。

活动：诊断问题、开发补丁、测试并部署修复。

常见场景：程序崩溃、功能异常、数据错误等。

2. 适应性维护

目的：使系统适应外部环境变化。

活动：适配新硬件、操作系统、数据库、第三方接口或法规要求（如GDPR）。

示例：升级至新的操作系统版本、兼容新版浏览器。

3. 完善性维护

目的：优化系统性能、用户体验或扩展功能。

活动：代码重构、性能调优、界面改进、增加新功能模块。

示例：优化数据库查询速度、简化用户操作流程。

4. 预防性维护

目的：预防未来可能发生的问题，提升系统可维护性。

活动：代码结构优化、技术债务清理、更新文档、安全加固。

示例：重构老旧代码模块、定期更新依赖库版本。

二、日常运维活动

监控与巡检：监控系统性能（CPU、内存、磁盘、网络）、日志、错误报警；定期检查备份完整性、安全漏洞。

备份与恢复：制定备份策略（全量/增量备份），定期测试恢复流程。

用户支持与培训：响应用户问题，提供操作指导，更新用户手册。

文档维护：更新技术文档、运维手册、架构图等。

三、专项维护领域

- 安全维护：漏洞扫描与修补、防火墙策略更新、渗透测试；定期更新SSL证书、访问权限审计。

- 数据库维护：数据清理、索引优化、执行计划分析、定期归档。

- 第三方依赖管理：更新框架、库、API接口，避免版本过期导致的安全风险。

四、维护流程与管理

- 变更管理：通过标准化流程（如ITIL）管理变更，减少部署风险。

- 版本控制：使用Git等工具管理代码版本，确保可追溯性。

- 回滚计划：重大更新前制定回滚方案，确保系统可快速恢复。

五、维护策略建议

- 制定维护计划：明确维护周期、责任人与优先级。

- 自动化运维：利用CI/CD、自动化测试、监控工具（如Prometheus、ELK）提升效率。

- 成本控制：平衡紧急修复与长期优化，避免技术债务累积。

六、常见挑战与应对

- 遗留系统维护：逐步重构、封装接口、制定迁移路径。

- 人员更替：完善文档和知识库，确保团队交接顺畅。

- 紧急故障：建立应急预案（如故障切换、灾难恢复）。

生命周期视角

系统维护成本通常占软件总成本的60%—70%，尤其在系统上线后逐渐成为主导。随着系统老化，维护难度和成本可能急剧上升，因此需要结合定期评估，判断是否需重构或替换系统。

通过系统化的维护，可延长软件生命周期，保障业务连续性，并持续创造价值。
	项
	1
	
	

	3
	部署与培训
	一、基础部署基本内容

部署是将经过测试的软件代码安装到生产服务器或云环境，并使其可被最终用户访问的过程。其核心目标是安全、平稳、可追溯。

1.代码与资源发布：将最终版本的软件包（如WAR, JAR, Docker镜像）或静态文件传输至生产服务器指定位置。

2.数据库变更：执行数据库迁移脚本（如SQL脚本），完成表结构变更、数据初始化或迁移。此操作需格外谨慎，建议有备份和回滚脚本。

3.配置更新：根据生产环境调整配置文件，如数据库连接串、第三方服务地址、API密钥、日志级别等。严禁使用开发或测试环境的配置。

4.服务启动/重启：启动新版本的应用服务，或优雅地重启服务进程。

5.依赖服务检查：验证与数据库、缓存、消息队列、外部API等依赖服务的连接是否正常。

二、用户培训基本内容

1.系统价值与目标介绍：首先阐明新系统将解决什么问题，带来哪些好处，而不仅是功能列表。

2. 核心概念讲解：解释系统中关键的术语、数据流程和业务逻辑。

3.主要功能演示与实操：

- 登录与界面导航：介绍主界面布局、菜单结构。

- 关键业务操作：分角色演示核心业务的完整操作流程（例如：如何创建一笔订单、如何审批一个流程）。

- 数据查询与管理：讲解如何查询所需信息，以及基础的数据维护。

- 系统管理功能（针对管理员）：用户权限管理、基础数据配置、日志查看等。
	项
	1
	
	

	4
	第三方服务与资源（首年）
	大模型API调用：如DeepSeek等大模型的 API基础调用。
文件存储：OSS对象存储（50GB）。
域名与SSL证书：基础域名及HTTPS支持。
小程序年服务费：腾讯公司微信小程序年费。
	项
	1
	
	

	合计：¥ 元
	
	

投标单位（公章）：

投标单位地址：

投标联系人： 投标联系电话：

